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ABSTRACT  

Let {X n , n≥1} be a sequence of random variables. Many concepts such as sum of random variables, maximum 

and minimum of random observations and related statistics have been thought off and their properties have been studied in 

the literature. This paper gives few generalized concepts on random observations along with applications.  
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INTRODUCTION  

The quality of highway depends on the area where it is constructed. Quality of highway constructed in the coastal 

area is very high as the temperature, weather and rain fall are extreme and hence can cause huge loss. The cost of highway 

in coastal area is very high compared to plain land. On the other hand same quality of highway in plain land is once again a 

loss to the government. As a result extreme behavior of temperature, pressure, weather and rain fall are very important 

factors to be considered in the decision of quality of highways. In the above example, let {Xn, n≥1} be a sequence of 

random measurement with common distribution function (d.f)  F. Let F(x)<1 for all x real. Gnedenko (1943) was first to 

study the degenerate limit of Yn as n � ∞, where Yn = max(X1, X2, …, Xn). The material strength is its weakest point This 

is an example of Mn = min(X1, X2, …, Xn).  Therefore it is meaningful to study the behavior of extreme values. Extensive 

discussion can be found in Galambos (1978). 

This paper concentrates on defining the related concepts on random measurements with applications. Concepts 

defined are: 

Forward moving maxima  

Moving maxima for first k(n) observations 

Moving minima for first k(n) observations 

Forward moving minima 

Max-ex for n observations 

Moving max-ex for first k(n) observations 

Backward moving max-ex 

Forward moving max-ex 
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Moving mex for first k(n) observations  

Backward moving mex 

Forward moving mex 

RESULT AND DISCUSSION 

According to ICMR-GCP, subjects in a clinical trial can withdraw at any time. It is a right of the subject. As a 

result in clinical trials, drop out of subject is an issue. To overcome this issue, usually companies increase the estimated 

sample size by x% of drop outs to meet the required sample size. Suppose that at the entry point, say, n sample 

observations are selected and at the end point of clinical trial, k(n)  subjects complete the trial. As a result k(n) is a fixed 

quantity. Hence, the clinical trial that has started with n subjects ends at k(n) subjects, i.e. it is a moving event. In social 

science research, it is common to discuss the response rate. Suppose for n subjects estimated, one may receive k(n) 

complete responses. As a result, n subjects moved to k(n) respondents. Hence due to drop out subjects, k(n) is a fixed 

quantity and is a real valued sequence varying from 2≤k(n)≤n. If there are no dropouts in clinical trials k(n) assumes value 

n. Clinical trial is meaningless if k(n) ≈ 0. At the end of the study, after the dropouts, k(n) observations are available and 

this is a fixed constant. This fixed constant is a function of the sample size (n), where n is available in the beginning of the 

clinical trial. As a result, the assumption on k(n) naturally occurs. Any biological parameters such as biochemical 

parameters, pathological parameters and so on can be thought of for k(n) observations. In the case of hypertension and 

hyperglycemia it is customary to think of maximum value of the patient. As a result, Hebbar and Vadiraja (1996-97) have 

defined forward moving maxima as follows without application. 

Forward moving maxima Yk(n) = max(Xn+1 , Xn+2 , …., Xn+ k(n)) where k(n) is a sequence of positive integers,       

2≤ k(n) ≤n with certain assumption on k(n): 

k(n) is non-decreasing        

Sup [ k(n+1) – k(n)] ≤µ (finite)       

and 

k(n) = [n/(logn)t(n)] where t(n) �p, 0≤p≤∞ as n � ∞   

In the case of hypothermia, hypotension and hypoglycemia it is customary to think of minimum value of the 

corresponding parameter of the patient. In view of this the following concept is defined. Forward moving minima         

Yk(n)
* = min(Xn+1 , Xn+2 , …., Xn+ k(n)) . These k(n) random variables on to the right of nth observation are different from 

those of backward moving minima and is defined as Vk(n) = min(Xn-k(n)+1 , X n-k(n)+2, …., Xn) for k(n) observations to the left 

of nth observations. The term moving maxima is due to Rothmann and Russo (1991).   

Below few issues with k(n) observations in moving maxima will be addressed.  Firstly, in moving maxima, the 

first k(n) observations are selected out of n observations. It appears that there is a biasedness among the selection of k(n) 

observations. Secondly, why can’t k(n) observations be selected randomly? The answer is, as k(n) observations are selected 

from the randomly selected n observations from a population, the biasedness will not arise at all. The selection of k(n) 

observations randomly from randomly selected n observations is not necessary and leads to complications in dealing with 

the independence of events. As a result, the selection of random k(n) observations are not relevant. Also that, for larger n 
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and n matching with N (the finite population size), k(n) observations also become larger. For larger k(n) ≤ n,  the concept 

of random selection loses its importance. Thirdly, what is the need for selection of k(n) observations from n? Fewer 

number of observations are studied in order to address constraints such as monetary, human resource, time and availability 

of resource issues. One can think of many applications those cannot be addressed over the entire population, especially in 

the case of research involving the destructive natured items. There are certain applications where in researcher will struggle 

hard to reach the required sample size also. For example in medical field, the replacement of artificial knee joint or 

replacement of bone with steel rod or organ transplantation and so on involve cost. In such situations one can think of k(n) 

observation concept or in the case of non funded research. Here the issue is that, does k(n) observations meet 80% power? 

As an answer, either one can think of n for more than 80% power and work k(n) for 80% or fix n for 80% power then this 

situation will be a particular case of k(n). Especially for larger n the k(n) can be thought off to achieve the better result. 

Also that, in market surveillance research in clinical trials of rejected drug, the company will be eager to know the factors 

for drug failure. In such situations they are not worried about n, and can concentrate on k(n). With all these explanation, 

k(n) concept is reasonable. 

In a hospital based study, the researcher will be interested in the sequential sampling where-in observations on 

patients will be collected based on their occurrences. Now hyperthermia and hypothermia applications can be thought off. 

Define  moving maxima of the first k(n) observations as  Yk(n)
**  = max(X1 , X2, …., X k(n)) where  Xi , i = 1,2,3,,,,k(n) be 

hyperthermia on ith day or ith individual.  Observe that these random observations are different from that of forward moving 

maxima and backward moving maxima. On similar line, one can think of first k(n) observations on hypothermia 

application to study the minimum temperature of an individual on jth day. In view of this, define moving minima of the first 

k(n) observations as Mk(n)
**  = min(X1 , X2 , …., X k(n)).  

Next few concepts on the values not taken by the random phenomenon will be discussed. Let us consider a 

clinical trial application once again. Subjects/patients are very important to conduct the clinical trials. To select the 

required number of subjects it is customary to screen many volunteers. To enroll the volunteers to trial they have to pass 

the screening test. Let success be the clearing of screening test. The number of subjects required for the clinical trials is a 

fixed quantity. To meet with this number of success, doctors undergo screening tests on volunteers on several days. 

Suppose a subject doesn’t pass the screening test, it is a miss hit. In other wards, failure is a miss hit by the success. On a 

given jth day the number of miss hits by r successes is a random variable. It is customary by a pharmaceutical industry to 

invest on all volunteers to undergo screening test in selecting r number of success. Suppose a volunteer misses the success, 

the money invested on him will add to wastage of cost. Hence, company will be interested to know the maximum wastage 

cost. To address this question, it is meaningful to know the maximum of miss hits to success. As a result, following related 

concepts are defined. Over n number of days, the maximum excludent is defined as follows. 

The maximum excludent (max_ex) over n observations: 

Zn = max_ex(X1 , X2 , …., Xn) 

     = max (t ≥ 0: for Xj ≠ t for j = 1, 2 , …n).   

Moving max_ex of first k(n) observations: 

Zk(n)
**  = max_ex(X1 , X2 , …., Xk(n)) 

          = min(t ≥ 0: for Xj ≠ t for j = 1, 2 , …k(n)).   
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Forward moving max_ex: 

Zk(n) = max_ex(Xn+1 , Xn+2 , …., Xn+ k(n)) 

        = max (t ≥ 0: for Xj ≠ t for j = n+1, n+2 , …n+k(n)).   

and 

Backward moving max_ex: 

Zk(n)
* = max_ex(X n-k(n)+1 , Xn-k(n)+2 , …., Xn) 

        = max(t ≥ 0: for Xj ≠ t for j = n-k(n)+1, n-k(n)+2 , …n)  

To understand the max_ex concept an example is worked out below. Let X1, X2, X3 are random variables 

representing “number of miss hit to success on jth  day”, j=1,2,3. Let the number of success i.e. number of subjects cleared 

the screening test on each day be 3. Let the number of miss-hit to success on each day be 13, 30, 15. Then max_ex is:  

Zn= max(t ≥ 0: for Xj ≠ t for j = 1, 2, 3) 

    = max(X1 ≠ 3, X2 ≠ 3, X3 ≠ 3) 

   =max(X1 = 13, X2 = 30, X3 = 15) 

Note that the company will also be interested in estimating the minimum wastage cost. Hence minimum of the 

number of miss hit to success is also important. As a result, when we concentrate on the k(n) number of days, k(n) being a 

fixed quantity, for different k(n) the minimum of miss-hit random variables also changes. As a result forward moving 

minimal excludent (moving mex) is meaningful. The term mex is due to Conway(1978). In view of this, define forward 

moving mex as: 

Lk(n) = mex(Xn+1 , Xn+2 , …., Xn+ k(n)) 

       = min(t ≥ 0: for Xj ≠ t for j = n+1, n+2 , …n+k(n)).   

On similar lines backward moving mex is defined as: 

Lk(n)
* = mex((X n-k(n)+1 , Xn-k(n)+2, …., Xn) 

         = min(t ≥ 0: for Xj ≠ t for j = n-k(n)+1, n-k(n)+2, …n) 

It is called backward moving mex because the k(n) random observations are left to the nth observations. These 

observations are different from that of forward mex.  Next define moving mex of first k(n) observations as: 

Lk(n)
**  = mex((X1 , X2 , …., Xk(n)) 

          = min(t ≥ 0: for Xj ≠ t for j = 1, 2 , …k(n)).   

To understand the mex concept an example is worked out below. Let X1, X2 , X3 are random variables.  

Ln= min(t ≥ 0: for Xj ≠ t for j = 1, 2, 3) 

    = min(X1 ≠ 0 , X2 ≠ 3 , X3 ≠ 6) 

    =min ( {1,2,3,..}, {0,1,2,4,…}, {0,1,2,3,4,5,7,…}) 
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CONCLUSIONS 

Motto of this paper is just to define the newer concepts and to provide application. However, these concepts can 

be applied in many areas to the user’s advantage.   
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